728x90
반응형

탐색Search이란 많은 양의 데이터 중에서 원하는 데이터를 찾는 과정을 의미한다. 대표적인 탐색 알고리즘이 DFS와 BFS이다. 프로그래밍에서는 자료구조 안에서 탐색을 하는데 DFS와 BFS를 알려면 스택과 큐에 관한 자료구조를 알아야된다.

 

스택

스택Stack은 레고 쌓기에 비유할 수 있다. 레고는 아래에서부터 위로 차곡차곡 쌓는다. 맨 아래에 레고를 빼기 위해서는 위에 레고를 빼야 된다. 즉, 먼저 쌓은 것이 제일 나중에 뺄 수 있다. 선입후출(First In Last Out) 또는 후입선출(Last In First Out) 구조 라고 한다. 

 

stack=[]
#삽입(1) - 삭제() - 삽입(3) - 삽입(5) - 삽입(6) - 삭제() - 삽입(2) - 삭제()
stack.append(1)
stack.pop()
stack.append(3)
stack.append(5)
stack.append(6)
stack.pop()
stack.append(2)
stack.pop()
print(stack)#[3,5]
print(stack[::-1])#[5,3]

 

append() 메서드는 리스트의 가장 뒤쪽에 데이터를 삽입하고, pop() 메서드는 리스트의 가장 뒤쪽에서 데이터를 꺼낸다.


 

큐Queue는 대기 줄에 비유할 수 있다. 우리가 놀이공원에 입장하기 위해 줄을 설 때, 먼저 온 사람이 먼저 들어가게 된다. 나중에 온 사람이 나중에 들어가기 때문에 흔히 '공정한' 자료구조라고 비유된다. 이러한 구조를 선입선출(First In First Out)라고 한다.

 

from collections import deque
queue=deque()
#삽입(4) - 삽입(2) - 삽입(1) - 삽입(8) - 삭제() - 삭제() - 삽입(4)
queue.append(4)
queue.append(2)
queue.append(1)
queue.append(8)
queue.popleft()
queue.popleft()
queue.append(4)

print(queue)
queue.revers()
print(queue)

 

파이썬으로 큐를 구현할 때는 collections 모듈에서 제공하는 deque 자료구조를 활용한다. deque는 스택과 큐의 장점을 모두 채택한 것인데 데이터를 넣고 빼는 속도가 리스트 자료형에 비해 효율적이며 queue 라이브러리를 이용하는 것보다 더 간단하다.

deque객체를 자료형으로 변경하고자 한다면 list(queue)를 사용하면 리스트 자료형이 반환된다.


DFS

DFS는 Depth-First Search, 깊이 우선 탐색이라고도 부르며, 그래프에서 깊은 부분을 우선적으로 탐색하는 알고리즘이다. DFS를 알려면 그래프의 표현 방식을 알아야 된다. 

 

그래프는 2가지 방식으로 표현할 수 있는데 인접 행렬 방식과 인접 리스트 방식이 있다.

인접 행렬 방식은 2차원 배열로 그래프의 연결 관계를 표현하는 방식이고 인접 리스트 방식은 리스트로 그래프의 연결 관계를 표현하는 방식이다. 

 

인접 행렬 방식은 2차원 배열에 각 노드가 연결된 형태를 기록하는 방식이다. 연결이 되어 있지 않은 노드끼리는 무한Infinity의 비용이라고 작성한다. 

 

인접 행렬 방식 예제

INF = 9999999999

graph = [
    [0,7,5],
    [7,0,INF],
    [5,INF,0]
]

print(graph)

[[0,7,5],[7,0,99999999],[5,999999999,0]]

 

 인접 리스트 방식에서는 모든 노드에 연결된 노드에 대한 정보를 차례대로 연결하여 저장한다. C++이나 Java와 같은 프로그래밍 언어에서는 별도로 연결 리스트 기능을 위한 표준 라이브러리를 제공한다.

 반면에 파이썬은 기본 자료형인 리스트 자료형이 append()와 메소드를 제공하므로, 전통적인 프로그래밍 언어에서의 배열과 연결 리스트의 기능을 모두 기본으로 제공한다. 파이썬으로 인접 리스트를 이용해 그래프를 표현하고자 할 때에도 단순히 2차원 리스트를 이용하면 된다. 

 

# 행(ROW)이 3개인 2차원 리스트로 인접 리스트 표현
graph = [[] for _ in range(3)]

#노드 0에 연결된 노드 정보 저장(노드, 거리)
graph[0].append((1,7))
graph[0].append((2,5))

#노드 1에 연결된 노드 정보 저장(노드, 거리)
graph[1].append((0,7))

#노드 2에 연결된 노드 정보 저장(노드, 거리)
graph[2].append((0,5))

print(graph)

 

DFS는 어떻게 작동할까? DFS는 깊이 우선 탐색 알고리즘이다. 이 알고리즘은 특정한 경로로 탐색하다가 특정한 상황에서 최대한 깊숙이 들어가서 노드를 방문한 후, 다시 돌아가 다른 경로로 탐색하는 알고리즘이다. 

 

1. 탐색 시작 노드를 스택에 삽입하고 방문 처리를 한다.

2. 스택의 최상단 노드에 방문하지 않은 인접 노드가 있으면 그 인접 노드를 스택에 넣고 방문 처리를 한다. 방문하지 않은 인접 노드가 없으면 스택에서 최상단 노드를 꺼낸다. 

3. 2번의 과정을 더 이상 수행할 수 없을 때까지 반복한다.

 

방문 처리는 스택에 한 번 삽입되어 처리된 노드가 다시 삽입되지 않게 체크하는 것을 의미한다. 방문 처리를 함으로써 각 노드를 한 번씩만 처리할 수 있다.

 

깊이 우선 탐색 알고리즘인 DFS는 스택 자료구조에 기초한다는 점에서 구현이 간단하다. 데이터의 개수가 N개인 경우 O(N)의 시간이 소요된다는 특징이 있다. 

 

또한 DFS는 스택을 이용하는 알고리즘이기 때문에 실제 구현은 재귀 함수를 이용했을 때 매우 간결하게 구현할 수 있다. 

 

def dfs(graph, v, visited):
    #현재 노드를 방문 처리
    visited[v]=True
    print(v,end=" ")
    #현재 노드와 연결된 다른 노드를 재귀적으로 방문
    for i in graph[v]:
        if not visited[i]:
            dfs(graph,i,visited)


#각 노드가 연결된 정보를 리스트 자료형으로 표현(2차원 리스트)
graph= [
    [],
    [2,3,8],
    [1,7],
    [1,4,5],
    [3,5],
    [3,4],
    [7],
    [2,6,8],
    [1,7]
]

#각 노드가 방문된 정보를 리스트 자료형으로 표현
visited = [False]*9

#정의된 DFS 함수 호출
dfs(graph,1,visited)

#1 2 7 6 8 3 4 5

BFS

BFS(Breadth First Search) 알고리즘은 '너비 우선 탐색'이라는 의미를 가진다. BFS는 가까운 노드부터 탐색하는 알고리즘이다. DFS는 최대한 멀리 있는 노드를 우선으로 탐색하는 방식으로 동작한다고 했는데, BFS는 그 반대로 가까이 있는것부터 차근차근 탐색해나간다. 

 

BFS 구현에서는 선입선출 방식인 큐 자료구조를 이용한다. 인접한 노드를 반복적으로 큐에 넣어서 가까운 노드부터 탐색해서 탐색할 수 있을때까지 찾아나가는 것이다.

 

1. 탐색 시작 노드를 큐에 삽입하고 방문 처리를 한다.

2. 큐에서 노드를 꺼내 해당 노드의 인접 노드 중에서 방문하지 않은 노드를 모두 큐에 삽입하고 방문 처리를 한다.

3. 2번의 과정을 더 이상 수행할 수 없을 때까지 반복한다.

 

BFS는 큐 자료구조에 기초한다. 구현함에 있어 deque라이브러리를 사용하는 것이 좋으며 탐색을 수행함에 있어 O(N)의 시간이 소요된다. 일반적인 경우 실제 수행 시간은 DFS보다 좋은 편이다.

 

from collections import deque

graph=[
    [],
    [2,3,8],
    [1,7],
    [1,4,5],
    [3,5]
]
visited=[False]*9

def bfs(graph,start,visited):
    queue=deque([start])
    visited[start]=True
    while queue:
        #큐에서 하나의 원소를 뽑아 출력
        v=queue.popleft()
        print(v,end=' ')
        #해당 원소와 연결된, 아직 방문하지 않은 원소들을 큐에 삽입
        for i in graph[v]:
            if not visited[i]:
                queue.append(i)
                visited[i]=True

 

2차원 배열에서의 탐색 문제를 만나면 그래프 형태로 바꿔서 생각하면 풀이 방법을 조금 더 쉽게 떠올릴 수 있다.

728x90
반응형

'알고리즘 > 알고리즘 이론' 카테고리의 다른 글

최단경로 (다익스트라)  (0) 2021.05.04
힙 자료구조  (0) 2021.05.04
정렬(Sort)  (0) 2021.04.12
재귀 함수  (0) 2021.04.02
브루트 포스 (Brute Force)  (0) 2021.03.18

+ Recent posts